

Caudales de 40 a 200 lts/min a 2000 rpm

Presiones hasta 210 bar Motores hasta 70 hp

GENERALIDADES

El conjunto de bombas y motores de engranajes denominado P5, abarca caudales de 40/60/80/100/120/140/160/180/200 lts/min a 2000 rpm y presiones hasta 210 bar.

Construida íntegramente en fundición de hierro.

Su cuerpo, de **fundición nodular** permite soportar mayores exigencias de funcionamiento de los circuitos, reduciendo considerablemente los bajos niveles de desgaste que se producen.

Los engranajes, apoyan sobre **rodamientos de rodillos** y están compensados hidráulicamente con placas **anti-fricción de aleación de bronce**.

Para la dimensiones de montaje se utilizan como guía de referencia las normativas SAE.

Es posible armar unidades múltiples: P5 / P5 y P5 / G1. Esto permite seleccionar diversas combinaciones de caudales, como así también, disponer de todas las versiones de tapas posteriores del grupo G1. Ademas el conjunto P5 puede combinarse como bomba trasera de un conjunto P7.

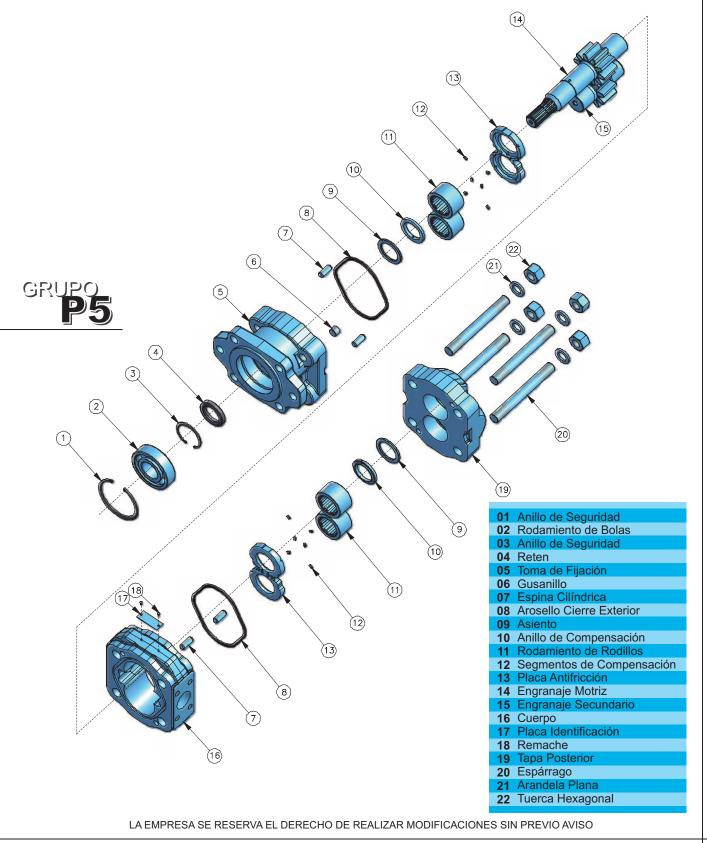
Para la correcta elección de una bomba se debe considerar la presión de trabajo, necesidad de caudal real, dimensiones de montaje, potencia absorbida, características del actuador, espacio físico, etc.

Las aplicaciones mas importantes del grupo P5 son:

Topadoras, palas cargadoras, moto niveladoras, retro excavadoras, centrales hidráulicas, prensas hidráulicas, barcos pesqueros, industria petrolera, maquinaria aplicada a la minería, etc.

Recomendaciones:

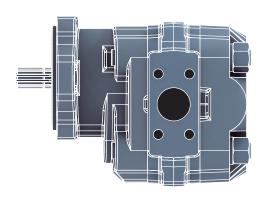
- Utilizar aceite hidráulico especifico.
- Utilizar filtros, tanto de succión como de retorno, apropiado y debidamente dimensionados.
- Asegúrese que el circuito tenga la velocidad de circulación del fluido correcta, evitando cavitación en la succión
- $\bullet \ \ \text{Evitar sobrepresiones (picos de presión) que superen los l\'imites permitidos recomendados.}$
- Asesórese y consulte, a nuestro Departamento de Ingeniería cuando lo considere necesario.



Cod.: CT-50-001 Versión: 01-11-2015

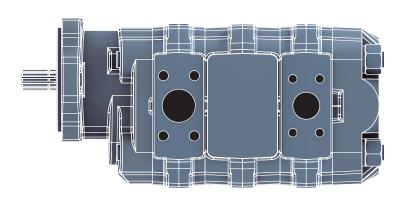
DESCRIPCIÓN

BOMBA GRUPO P5

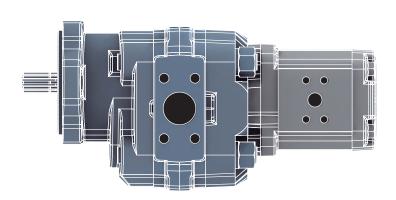


oleohidráulica

UNIDADES SIMPLES Y MÚLTIPLES

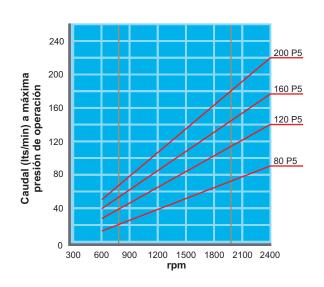


BOMBA P5



BOMBA TANDEM P5 / P5

BOMBA TANDEM P5 / G1


CARACTERÍSTICAS TÉCNICAS

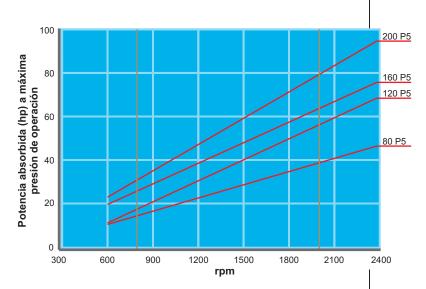
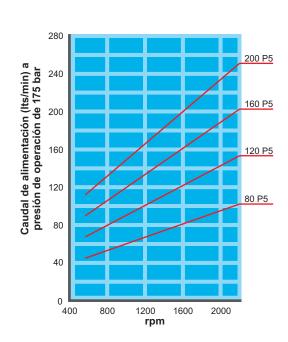
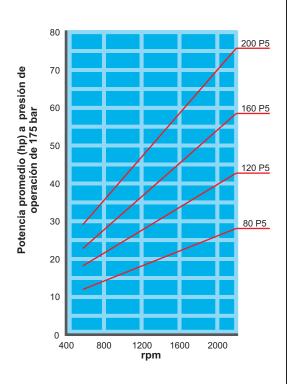


TABLA DE VALORES

	VALORACION	JES	MODELOS								
	VALORAGIONES		40	60	80	100	120	140	160	180	200
	Desplazamiento	cm³/rev	20.90	31.30	41.80	52.20	62.70	73.10	83.60	94	104.50
		in ³ /rev	1.28	1.91	2.55	3.19	3.83	4.46	5.10	5.74	6.38
	Caudal (a 2000 rpm	Its/min	40	60	80	100	120	140	160	180	200
TÉCNICAS	Caudai (a 2000 ipili)	gal/min	10.57	15.85	21.13	26.42	31.7	36.98	42.27	47.55	52.83
$\frac{9}{8}$	Ancho de engranaje	mm	12.70	19.05	25.40	31.75	38.10	44.45	50.80	57.15	63.50
ÉC		inches	1/2"	3/4"	1"	1 1/4"	1 1/2"	1 3/4"	2"	2 1/4"	2 1/2"
_	Ancho de cuerpo	mm	31.75	38.10	44.45	50.80	57.15	63.50	69.85	76.20	82.55
Ä	Ancho de caerpo	inches	1 1/4"	1 1/2"	1 3/4"	2"	2 1/4"	2 1/2"	2 3/4"	3"	3 1/4"
9	rom	mínima		600							
ESPECIFICACIONES	rpm	máxima					2400				
Ë	Máxima presión de	bar		210		190				175	
) E	operación	psi		3045		2755				2538	
S	Máxima presión	bar		225			205		190		
_	intermitente	psi		3263			2973			2755	
	Dogo oprovimado	kg	17.30	18.50	19.60	20.80	22	23.10	24.20	25.10	26.20
	Peso aproximado lb			40.79	43.21	45.86	48.50	50.93	53.35	55.34	57.76
	Ten	nperatura	durante	el ensay	/o 50°С.	Aceite h	idráulico	ISO 46.			

CUALQUIER OTRO REQUERIMIENTO TÉCNICO PODRÁ SER CONSULTADO A NUESTRO DEPARTAMENTO DE INGENIERÍA

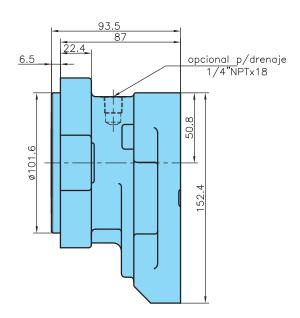

CARACTERÍSTICAS TÉCNICAS

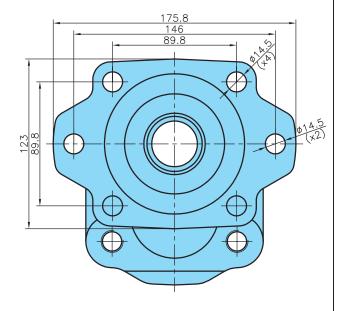


RENDIMIENTO MOTOR P5

		MODELOS										
		80		120			160			200		
(rpm)	ENT.	SA	L.	ENT.	SA	۸L.	ENT.	SA	۱L.	ENT.	SAL.	
VELOCIDAD (r	CAUDAL (Alimentación)	TORQUE	POTENCIA	CAUDAL (Alimentación)	TORQUE	POTENCIA	CAUDAL (Alimentación)	TORQUE	POTENCIA	CAUDAL (Alimentación)	TORQUE	POTENCIA
VEI VEI	Its/min	kgm	hp	Its/min	kgm	hp	Its/min	kgm	hp	Its/min	kgm	hp
	gal/min	In-lb	kW	gal/min	In-lb	kW	gal/min	In-lb	kW	gal/min	In-lb	kW
800	39	9.1	10.2	58.6	13.9	15.5	78.1	18.9	21.9	97.6	24.0	26.8
000	10.3	793	7.7	15.5	1204.1	11.6	20.6	1644.1	16.4	25.8	2079.3	20.1
1200	58.6	9.1	15.3	86.4	14.2	23.8	115.2	18.9	32.9	140.4	24.0	40.1
1200	15.5	793	11.5	22.8	1233.1	17.9	30.4	1644.1	24.6	37.1	2079.3	30.1
1600	76.8	9.7	21.7	115.20	14.5	32.5	152.3	19.4	44.8	187.2	24.2	54.1
1000	20.3	841.4	16.2	30.4	1262.1	24.4	40.2	1682.8	33.6	49.5	2103.5	40.6
2000	95.2	9.4	26.1	142.8	14.5	39.7	190.4	19.4	56	234.0	25.1	70.0
2000	25.1	812.4	19.6	37.7	1262.1	29.8	50.3	1682.8	42	61.8	2176.0	52.5
							ión de o _l C. Aceite					

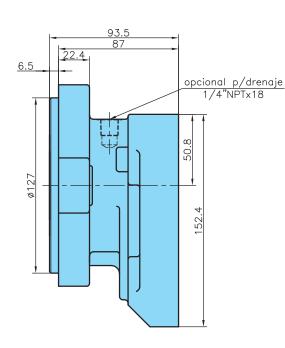
CUALQUIER OTRO REQUERIMIENTO TÉCNICO PODRÁ SER CONSULTADO A NUESTRO DEPARTAMENTO DE INGENIERÍA

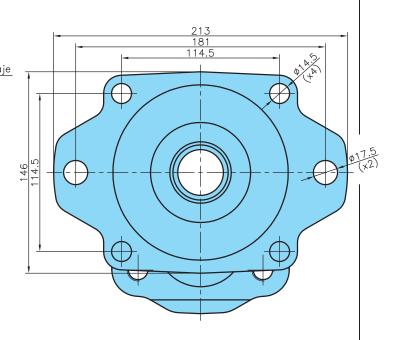



TOMAS DE FIJACIÓN

TOMA DE FIJACIÓN CO-VK 4" (Ø101.6)

Corresponde a SAE B combinada 4 y 2 agujeros

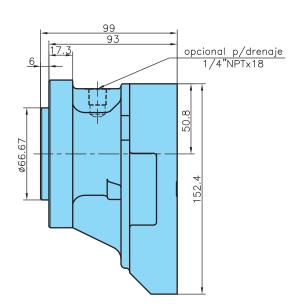


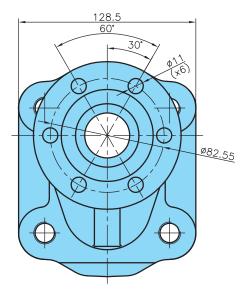


GRUPO P5

TOMA DE FIJACIÓN CO-VK 5" (Ø127)

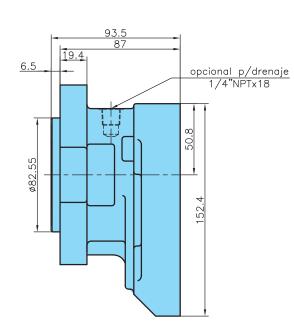
Corresponde a SAE C combinada 4 y 2 agujeros

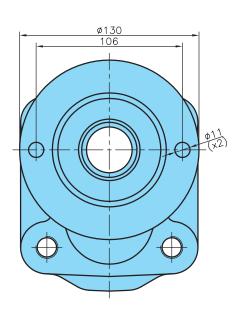



TOMAS DE FIJACIÓN

TOMA DE FIJACIÓN CIRCULAR (6 FIJACIONES)

Corresponde a aplicación Michigan

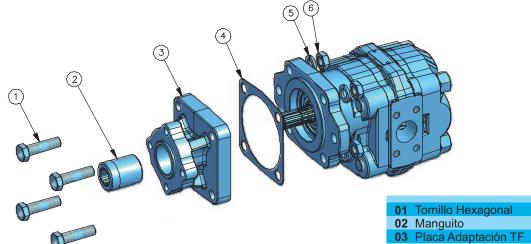




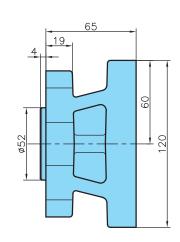
GRUPO P5

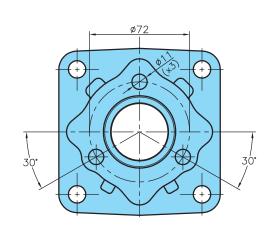
TOMA DE FIJACIÓN F82

Corresponde a SAE A

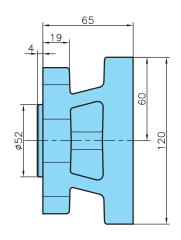


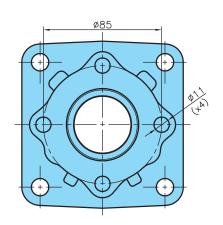
TOMAS DE FIJACIÓN



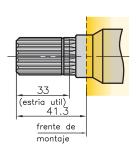

NOTA: Este sistema de adaptación "TF" se aplica sobre toma de fijación CO-VK 4", con eje Z=13 o Z=15 según norma SAE

- **04** Junta
- 05 Arandela Grower
- 06 Tuerca Hexagonal

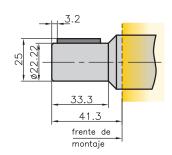

PLACA ADAPTACIÓN "TF" (3 FIJACIONES)



PLACA ADAPTACIÓN "TF" (4 FIJACIONES)



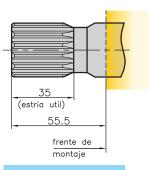
TIPOS DE EJES



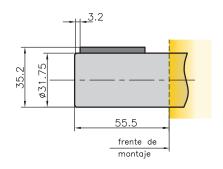
ESTRIADO Z=13 (SAE)

CILÍNDRICO Ø22.2 (7/8") (SAE)

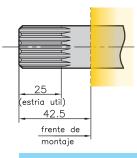
DP= 16/32 Ø= 22.22 mm (7/8")

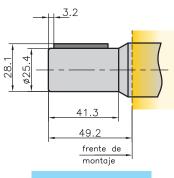


Ø= 22.22 mm (7/8") Chav. Cuadrada 1/4" x 1/4" x 1"


ESTRIADO Z=14 (SAE)

CILÍNDRICO Ø31.75 (1 1/4") (SAE)


DP= 12/24 Ø= 31.75 mm (1 1/4")

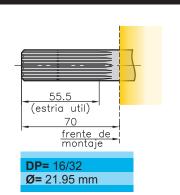

Ø= 31.75 mm (1 1/4") Chav. Cuadrada 5/16" x 5/16" x 1 1/2"

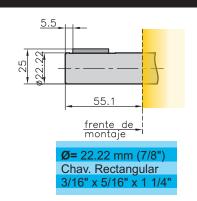
ESTRIADO Z=15 (SAE)

CILÍNDRICO Ø25.4 (1")

DP= 16/32 **Ø=** 25.4 mm (1")

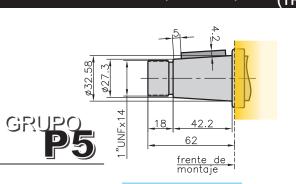
Ø= 25.4 mm (1") Chav. Cuadrada 1/4" x 1/4" x 1 1/4"



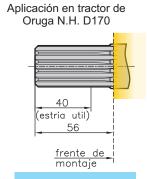

TIPOS DE EJES

ESTRIADO Z=13 (ESPECIAL)

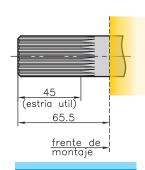
CILÍNDRICO Ø22.22 (ESPECIAL)



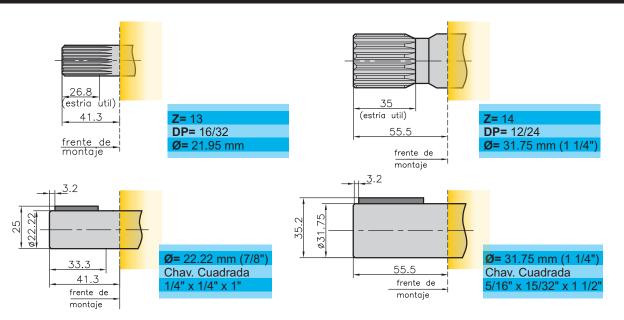
CÓNICO (CONO 1:8)


ESTRIADO Z=10

ESTRIADO Z=13


(TRACTOR NEW HOLLAND) (MOTONIVELADORA CATERPILLAR)

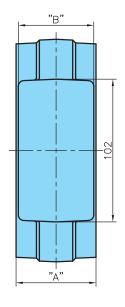
Conicidad= 1:8 Chav. Cuadrada 5/16" x 5/16" x 1 1/4"

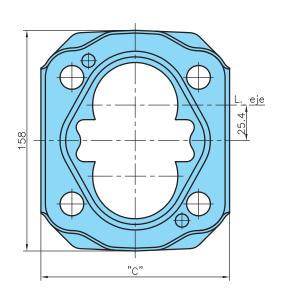


MODULO= 2.75 Ø= 29 mm

DP= 12/24 Ø= 29 mm

APLICACIÓN INDUSTRIA PETROLERA


NOTA: Ejes para ser utilizados con reten especial.

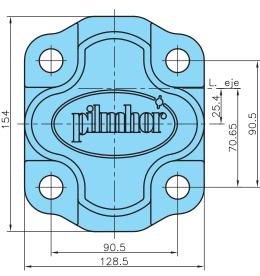


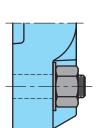
CUERPOS

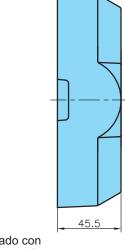
CUERPO BIDIRECCIONAL

MODELO	COTA "A" (mm)	COTA "B" (mm)	COTA "C" (mm)
40-P5	31.75	31.75	138
60-P5	38.10	38.10	138
80-P5	44.45	44.45	138
100-P5	50.80	48	135
120-P5	57.15	54	135
140-P5	63.50	60	135
160-P5	69.85	67	135
180-P5	76.20	67	168
200-P5	82.55	67	168

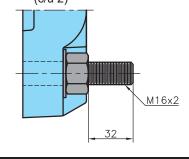
			PE	RF	OR/	AD(os,	AD	MIS	BI	_ES	3			
	CÓDIGO	CUI	CUERPO ENTRADA LATERAL CUERPO SALIDA LATE									TER	RAL		
	Nº (SAE)	80	100	120	140	160	180	200	80	100	120	140	160	180	200
Œ.	8	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	12	•	•	•	•	•	•	•	•	•	•	•	•	•	•
¥	16	•	•	•	•	•	•	•	•	•	•	•	•	•	•
PERFORADO	20	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Ä	24	-	-	•	•	•	•	•	-	-	-	•	•	•	•
	32	-	-	-	-	•	•	•	-	-	-	-	-	•	•
<u>a</u>	8	•	•	•	•	•	•	•	•	•	•	•	•	•	•
ğ	12	•	•	•	•	•	•	•	•	•	•	•	•	•	•
S.	16	•	•	•	•	•	•	•		•	•	•	•	•	•
PERFORADO	20	-	_	-	•	•	•	•			-	•	•	•	•
	24 8	•	-	-	_		•	•	-	-	-	-	•	•	•
	10		•												
Ø	12	•	•	•		•	•	•	•	•		•	•	•	•
9	14	_	•	•		•	•	•	_	•		•	•		
98	16	-	•	•	•	•	•	•	_	•	•	•	•	•	•
PERFORADO	20	_	_	•	•	•	•	•	_	_	-	_	•	•	•
<u> </u>	24	-	_	-	-	•	•	•	-	_	-	-	_	•	•


PARA CUALQUIER OTRO TIPO DE PERFORADO PODRÁ SER CONSULTADO A NUESTRO DEPARTAMENTO DE INGENIERÍA

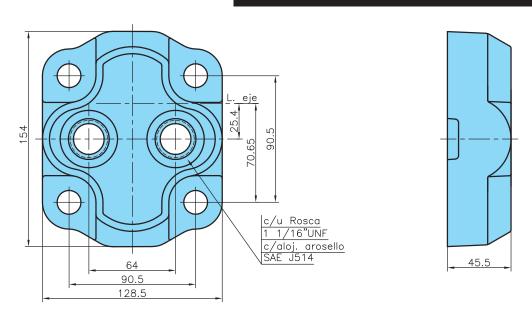

TAPAS POSTERIORES



TAPA POSTERIOR STANDARD

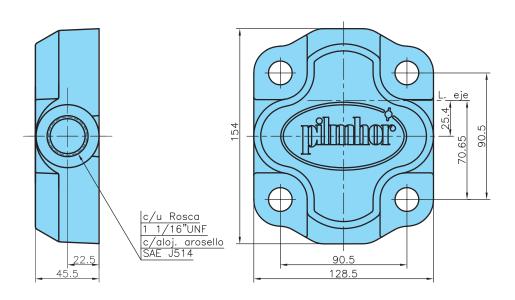


Armado normal

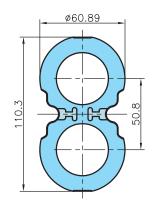


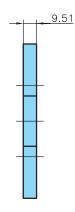
Armado con prolongación de espárragos (c/u 2)

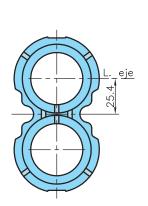
TAPA POSTERIOR CON ENTRADA y SALIDA POSTERIOR


NOTA: Es posible la combinación de entrada lateral por el cuerpo con salida posterior en la tapa, como así también, salida posterior en la tapa únicamente (con entrada en el intermediario tandem).

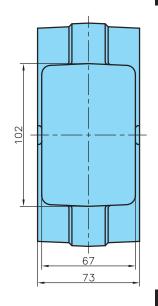
TAPAS POSTERIORES - PLACA ANTIFRICCIÓN

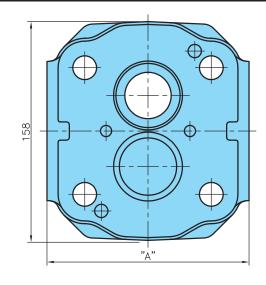



TAPA POSTERIOR CON SALIDA LATERAL



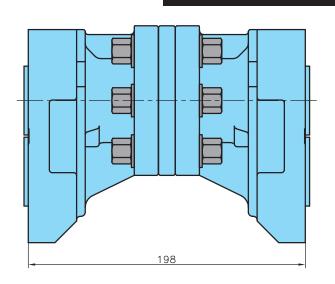
PLACA ANTIFRICCIÓN

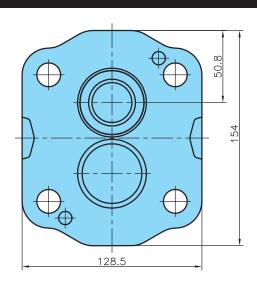




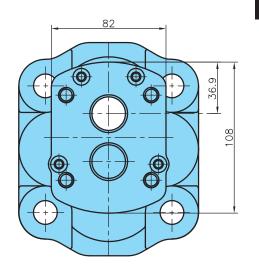
INTERMEDIARIOS TANDEM

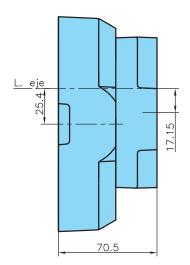
INTERMEDIARIO TANDEM P5 / P5

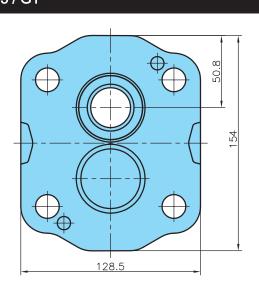



COTA "A' (mm)

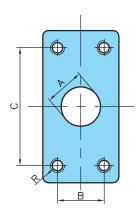
132
144.50


INTERMEDIARIO TANDEM P5 / P5 PARA TANQUES INDEPENDIENTES

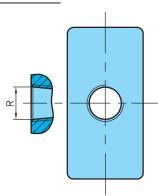




INTERMEDIARIO TANDEM P5 / G1



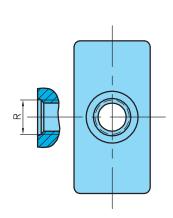
PERFORADOS (Para cuerpos e intermediarios tandem)


PERFORADO SAE STANDARD

CÓDIGO DEL PERFORADO (F)										
NOMINAL A B C R CÓDIGO INTERMEDIARIO TANDEM										
(OD TUBE)	(mm)	(mm)	(mm)	(mm)	N° (SAE)	ENT.	SAL.			
1/2"	12.70	17.47	38.10	5/6" UNCx18	8	•	•			
3/4"	19.05	22.22	47.62	3/8" UNCx16	12	•	•			
1"	25.40	26.18	52.37	3/8" UNCx16	16	•	•			
(*)1 1/4"	31.75	30.17	58.72	7/16" UNCx14	(*) 20	•	•			
1 1/2"	38.10	35.71	69.85	1/2" UNCx13	24	•	•			
2"	50.80	42.87	77.77	1/2" UNCx13	32	•	-			

EJEMPLO: PERFORADO SAE STANDARD "F20" CORRESPONDE A NOMINAL (*) 1 1/4", DEBIENDOSE ACLARAR SI PERTENECE A ENTRADA O SALIDA.

GRUPO P5



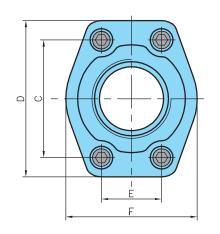
PERFORADO CON ROSCA CÓNICA

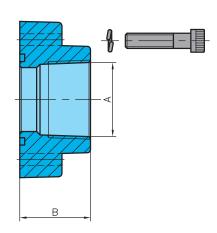
CĆ	CÓDIGO DEL PERFORADO P									
NOMINAL										
(OD TUBE)		N° (SAE)	ENT.	SAL.						
1/2"	1/2" NPTx14	8	•	•						
3/4"	3/4" NPTx14	12	•	•						
1"	1" NPTx11 1/2	16	•	•						
(*)1 1/4"	1 1/4" NPTx11 1/2	(*) 20	•	•						
1 1/2"	1 1/2" NPTx11 1/2	24	•	-						

EJEMPLO: PERFORADO C/ROSCA CONICA "P20" CORRESPONDE A NOMINAL (*) 1 1/4", DEBIENDOSE ACLARAR SI PERTENECE A ENTRADA O SALIDA.

PERFORADO CON ROSCA CILÍNDRICA PARA AROSELLO

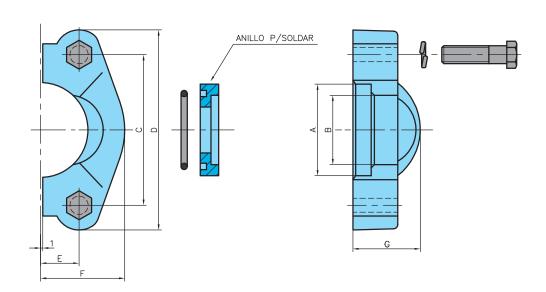
CÓ	CÓDIGO DEL PERFORADO S								
NOMINAL (OD TUBE)	RUSCA R COLOUR IANDEM								
(OD TOBE)		N° (SAE)	ENT.	SAL.					
1/2"	3/4" UNFx16	8	•	•					
5/8"	7/8" UNFx14	10	•	•					
3/4"	1 1/16" UNFx12	12	•	•					
7/8"	1 3/16" UNFx12	14	•	•					
1"	1 5/16" UNFx12	16	•	•					
1 1/4"	1 5/8" UNFx12	20	•	•					
(*)1 1/2"	1 7/8" UNFx12	(*) 24	•	-					


EJEMPLO: PERFORADO C/ROSCA CILINDRICA "S24" CORRESPONDE A NOMINAL (*) 1 1/2", DEBIENDOSE ACLARAR SI PERTENECE A ENTRADA O SALIDA.



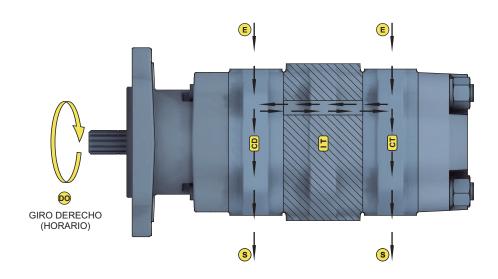
BRIDAS

BRIDAS ROSCADAS

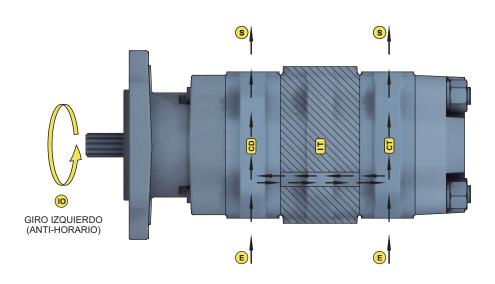


MEDIDA	DIMENSIONES									
SAE	ROSCA (A)	В	С	D	Е	F				
3/4"	3/4" NPTx14	35	47.62	65	22.22	44				
1"	1" NPTx11 1/2	35	52.37	70	26.18	51				
(*)1 1/4"	1 1/4" NPTx11 1/2	40	58.72	79	30.17	63				
1 1/2"	1 1/2" NPTx11 1/2	45	69.85	93	35.71	72				
2"	2" NPTx11 1/2	45	77.77	102	42.87	90				

MEDIAS BRIDAS

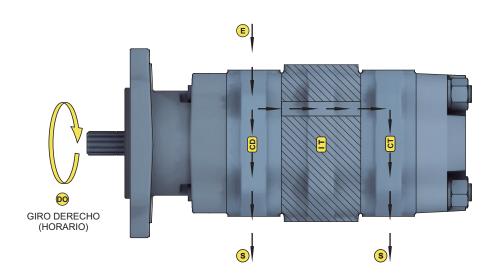


MEDIDA			DIMENS	IONES			
SAE	A B C D E F						
2"	72.24	62.74	77.77	102	21.44	48.20	26

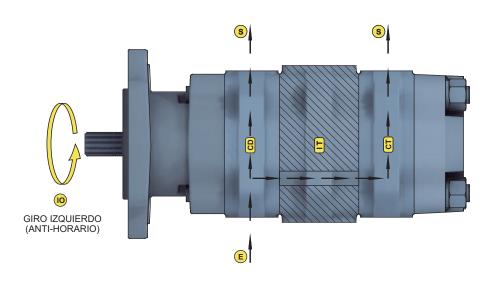

VERSIÓN "A" - Caso 1 -

Bomba de rotación . Cuerpos . CD y . CT con . y . s independientes. El intermediario . LT con . y . s ciegos, comunica entre sí ambas . e en las bombas.

VERSIÓN "A" - Caso 2 -

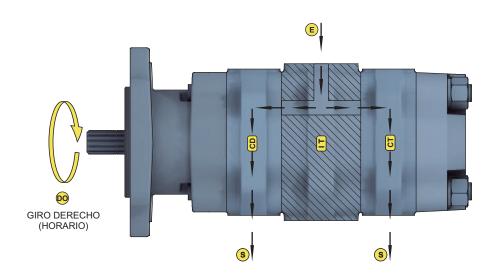


Idem "Caso 1". Solo cambia rotación: es bomba rotación 0 .

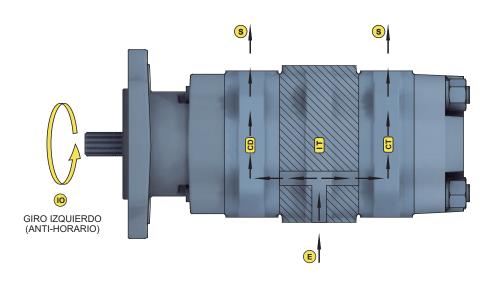

VERSIÓN "A" - Caso 3 -

Bomba de rotación DO. Aspiración E por cuerpo CD. El cuerpo CT aspira a través del intermediario T el que tiene sus E y S ciegos. Las S de los cuerpos CD y CT son independientes.

VERSIÓN "A" - Caso 4 -

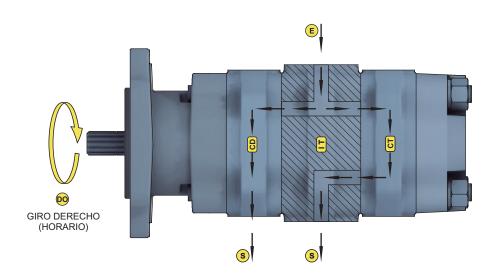


Idem "Caso 3". Solo cambia rotación: es bomba rotación 0 .

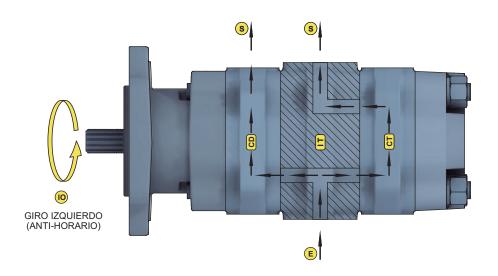

VERSIÓN "B" - Caso 1 -

Bomba de rotación D. La aspiración E de los cuerpos CD y CT se produce a través del intermediario IT, el que tiene su salida s ciega. Las salidas s de los cuerpos CD y CT son independientes.

VERSIÓN "B" - Caso 2 -

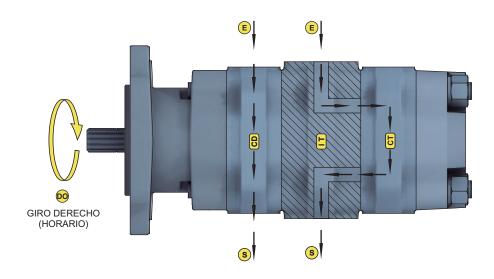


Idem "Caso 1". Solo cambia rotación: es bomba rotación $\overbrace{\rm 10}$.

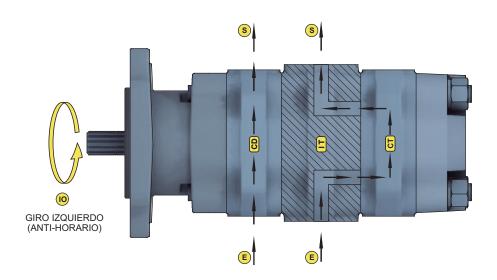

VERSIÓN "C"

Bomba de rotación . La aspiración E de los cuerpos CD y CT se produce a través del intermediario IT, el cuerpo CD tiene su salida s independiente, y el cuerpo CT tiene ciega su salida s la que se produce a través del intermediario IT.

VERSIÓN "D"

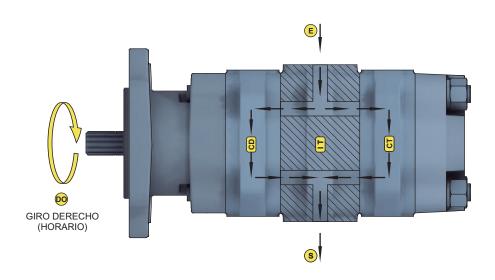


Bomba rotación (O). El caso es similar a la versión "C", solo que el intermediario [T] modifica la posición relativa de sus perforados por la diferencia en la rotación.

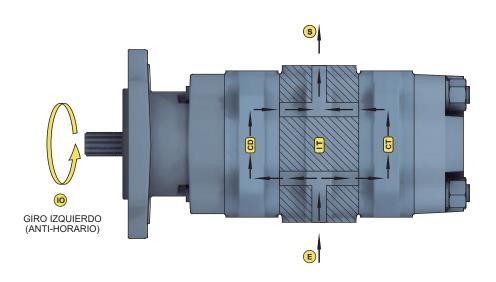

VERSIÓN "E"

Bomba rotación (c). Cuerpo (c) tiene su aspiración (c) y salida (s) independiente. El cuerpo (c) con (c) y (s) ciegos, la realiza a través del intermediario (c) que posee entrada (c) y salida (s).

VERSIÓN "F"

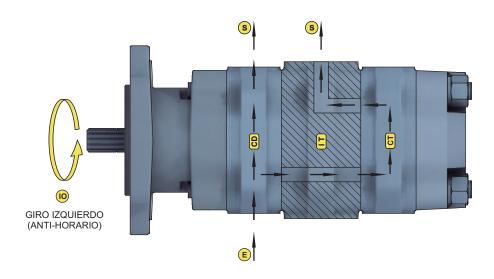


Bomba rotación (O). El caso es similar a la versión "E", solo que el intermediario (IT) modifica la posición relativa de sus perforados por la diferencia en la rotación.

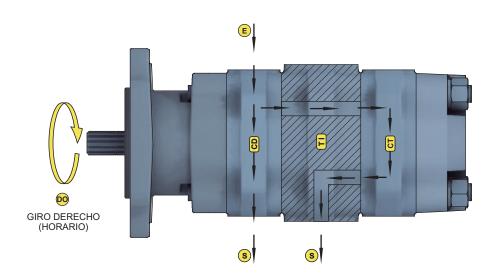

VERSIÓN "H" - Caso 1 -

Aplicable particularmente en motores, rotación 00.. La presión ingresa por E del intermediario T el que la distribuye hacia los cuerpos CD y CT, recogiendo finalmente el caudal para permitir el retorno por S de dicho T.

VERSIÓN "H" - Caso 2 -

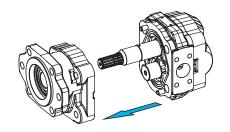


Idem "Caso 1". Solo cambia la rotación: es rotación (10). Se invierte solo el sentido de circulación del caudal.
Para rotación reversible (20): consultar.

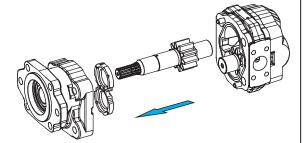

VERSIÓN "J"

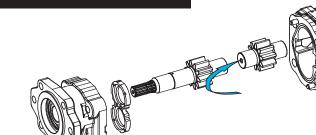
Bomba rotación (IO). El cuerpo CD tiene su aspiración (E) y salida (S) independientes. El cuerpo (CT) con (E) y (S) ciegos, aspira a través del intermediario (IT) de la (E) del cuerpo (CD) y la salida se produce por la (S) del intermediario (IT).

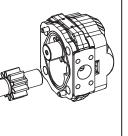
VERSIÓN "L"

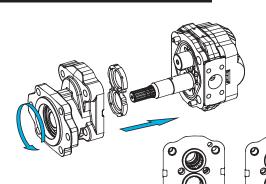


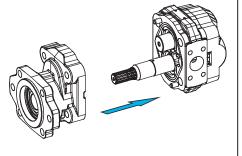
Bomba rotación 00. El caso es similar a la versión "J", solo que el intermediario IT modifica la posición relativa de sus perforados por la diferencia en la rotación.

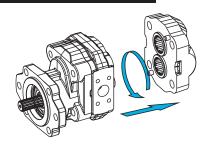


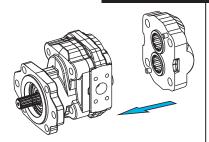

CAMBIO DE GIRO



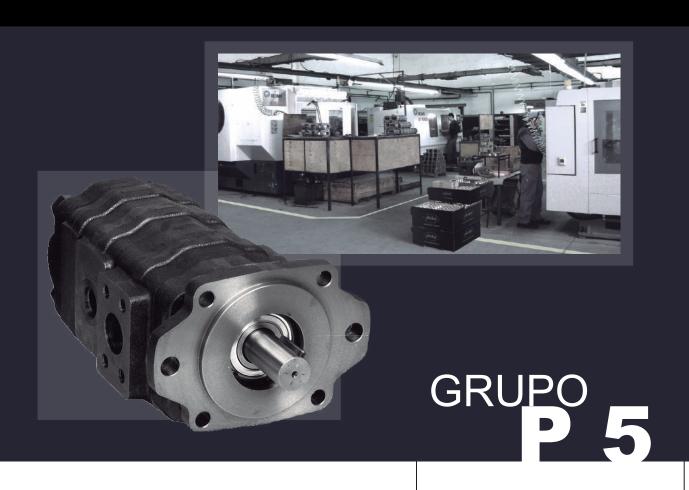








Modificar la posición del gusanillo, en función del giro.



Girar tapa posterior para invertir posición del anillo de compensación

www.pilmhor.com.ar

Francisco de Arteaga 2225 B° Villa Adela (X5011CXG) Córdoba - Argentina Tel./Fax: líneas rotativas (+54 - 351) 465-0012